
Abstract—A state-of-charge (SOC) balancing method which ac-
counts for state-of-health (SOH) status of battery cells is presented
in this article. The data collected from aging experiments conducted
in the laboratory indicates that there is correlation between the
minimum impedance of the battery and capacity fading which
can be used to predict capacity capability of the battery. However,
this relationship is complex and nonlinear. In this article, artificial
neural network (ANN) is utilized to learn this relationship and an
ANN-based capacity estimator is developed to predict available ca-
pacity of battery cells. An online impedance measurement method
with improved measurement resolution is presented to obtain a
more accurate minimum impedance for the ANN-based capacity
estimator. The estimated capacity from the ANN capacity estimator
is fed to an SOC balancing controller to calculate SOC values for the
battery cells. A battery cell with worse health has lower available
capacity than a battery cell with better health, and, therefore, its
SOC value is adjusted to a smaller value when SOH or capacity
estimation functionality is activated. Because of this mechanism
and the control principle of the presented SOC balancing controller,
the system draws energy at a slower rate from the battery cell(s)
with lower SOH and draws energy at a faster rate from the battery
cell(s) with higher SOH such that all battery cells reach their end
of discharge at the same time. This results in extending operation
time of the system, makes best use of energy from every battery
cell, and avoids over-discharging battery cells with lower SOH.
The presented method is evaluated using results obtained from a
laboratory experimental setup.

Index Terms—Battery, battery balancing, battery capacity,
battery management system (BMS), dc–dc, electrochemical
impedance spectrum, power converter, state-of-charge (SOC),
state-of-health (SOH).

I. INTRODUCTION

BATTERIES and battery systems are widely used for en-
ergy storage in a wide range of applications such as

consumer electronics, medical-portable electronic devices, au-
tomotive/vehicles, and smart grid [1]–[6]. Therefore, develop-
ing high-performance advanced battery management systems

(BMSs) with crucial functions such as state-of-health (SOH)
estimation and state-of-charge (SOC) estimation and balancing
is important [7]–[27]. These functions allow to have an efficient,
safe, and reliable battery system in the related application.

There are a variety of batteries’ SOC balancing methods
presented in the literature to address the SOC imbalance issue
such as those presented in [10]–[21]. These methods can be
classified into two main categories: 1) passive balancing scheme
and 2) active balancing schemes [10]–[21]. Passive balancing
scheme uses shunt resistors or switches which are connected in
parallel with batteries to dissipate power [10], [11]. This scheme
is simple to implement, but it wastes energy in order to achieve
SOC balancing. On the other hand, active balancing schemes
balance SOC through energy-recovery mechanisms [12]–[21]
or energy drawing allocation control method (for instance, the
energy sharing controller presented in [12]). Active SOC bal-
ancing schemes increase the energy utilization efficiency but
are usually more complex to realize.

The aforementioned battery balancing schemes do not take the
effect of the SOH of battery cells into account when performing
SOC balancing. These SOC balancing schemes operate under
the assumption that all of the battery cells or modules have
the same capacity capability (same SOH), which cannot be
guaranteed and might not be always the case. When a battery cell
goes through more aging cycles, capacity fading and impedance
growth will occur [22]–[27]. Battery cells or modules in a battery
system might age differently, which results in different capacity
fading rates or levels. If an SOC balancing controller assumes
that all battery cells or modules have the same capacity as they
age, then the battery cell or module with higher capacity fading
(lower capacity value) may run out of charges (reach end of
discharge condition) earlier than other battery cells or modules
in the system. Under such situation, if the BMS continues to
draw energy or charges from the aged battery cell or module,
this battery cell or module will be subjected to over-discharging
which might cause failure in the system and/or fire.

SOH estimation or capacity estimation methods can be clas-
sified into two main categories: 1) equivalent model-based
methods and 2) data-driven methods [22]–[27]. The equivalent
model-based methods include the electrochemical equivalent
model method and electrical equivalent circuit model method
[22]–[26]. Electrochemical equivalent model methods use com-
plex differential equations to characterize the electrochemical
reaction processes that occur inside the battery, which usually
requires high computation power (and cost) in order to obtain
the needed analytical solutions. The electrical equivalent circuit
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model methods usually use electric circuit component intercon-
nections and values that can fit the electrochemical impedance
spectroscopy (EIS) data. The equivalent model-based methods
help to understand the underlying aging mechanism of a bat-
tery, which usually cannot be accurately generalized for other
battery-type cells. When it comes to a new type of battery,
the model has to be redeveloped almost completely to char-
acterize the behavior of this new battery. Recently, data-driven
methods become increasingly popular due to new developments
of deep learning methods and developments of microproces-
sors/microcomputers with high computational capabilities and
reduced size, cost, and power consumption [27]. Deep learning
methods can learn the aging patterns based on historical data and
then make prediction about the health status of a battery by taking
input data from the process (new) measurement results of the
battery.

This article presents a method which takes into account the
effect of different SOH conditions for different battery cells or
modules when balancing SOC. Aging data is collected in the
laboratory for Li-Ion batteries and then analyzed. The collected
and analyzed data includes EIS and capacity fading for the
batteries. The collected data verified an existing correlation
or relationship between the minimum magnitude value of the
complex impedance (Zmin) of the battery and capacity fading.

Since capacity fading indicates SOH status of the battery, it
is found that Zmin has a very good potential to reflect the health
status of battery. However, this relationship is nonlinear. Be-
cause of the strong nonlinear fitting capability and adaptability
of artificial neural network (ANN), it is utilized to learn this
nonlinear relationship between the SOH of the battery and Zmin

and then to predict the SOH or the capacity capability of each
battery cell or module. The capacity capability here refers to the
amount of charges the battery can supply to the load when the
battery is charged fully before it reaches the end of discharge
condition. The presented ANN can adapt to the new changes in
the battery cells behavior when new aging data is fed back into
the ANN, which results in more accurate results compared with
static aging prediction model.

The input data of the ANN, i.e., the minimum magnitude value
of the complex impedance (Zmin), is obtained or tracked by
using the presented online impedance measurement method in
this article with improved speed and accuracy compared with the
methods in [28] and [29]. The capacity capability information
of each battery cell from ANN estimator is fed into the SOC
balancing module to calculate or adjust the SOC values. Based
on the updated/corrected capacity capability, the system adjusts
the SOC value of unhealthy battery to a smaller value compared
with other relatively healthier batteries. This operation enables
the system to draw higher energy from the healthier battery cells
and/or smaller energy from the relatively less healthy battery
cells, which allows to discharge battery cells/modules almost
completely at the same time and extend the system operation
time (and therefore efficiency) without over-discharging any of
the battery cells or modules. Otherwise, it would likely result
in further degrading the relatively less healthy battery cells,
destroying them, or, in the worst case, causing them to catch
fire.

The remainder of this article is organized as follows. Section II
discusses the details of the principle of the presented SOH-aware
SOC balancing method. The preliminary experimental evalua-
tion results are presented in Section III. The conclusion is given
in Section IV.

II. PRINCIPLE OF THE SOH-AWARE SOC BALANCING METHOD

Fig. 1 shows an illustration diagram for the developed BMS
used to evaluate the presented SOC balancing controller with
SOH awareness capability. The distributed battery architecture
is adopted, i.e., each battery cell (or each module consisting of
several battery cells) is connected to its own low-voltage dc–dc
converter instead of using one single high-voltage high-power
dc–dc converter for all in series connected cells [12]. Each
battery cell and its dc–dc converter are connected together to
form a battery power unit (BPU). The BPUs are connected in
series at the output of the power converters to form a battery pack.
There are three main modules in this BMS (each module repre-
sents one of the contributions of this article): 1) the ANN-based
SOH estimation module, 2) the module used for tracking of the
minimum magnitude value of the complex impedance for each
battery cell or module, and (3) the SOC balancing module. These
three modules are discussed in the remainder of this section.

A. ANN-Based SOH Estimation Module

The adopted definition for SOH in this article is based on
capacity fading, as given by the following equation:

SOH =
Qavail

Qnominal
(1)

whereQavail is the amount of available charges the fully charged
battery cell can supply under the current health condition, and
Qnominal is the nominal amount of charges the fully charged bat-
tery cell can supply when it is new. Qavail can be experimentally
measured during battery discharging operation, and Qnominal

can usually be obtained from the manufacturer’s datasheet (or
can also be measured experimentally when the battery is new).
When the battery is new, Qavail = Qnominal and therefore
SOH = 1 or 100%.

In order to calculate the SOH value as defined in (1), there is a
need to obtain the value of Qavail. In this article, an ANN-based
capacity estimator is developed to estimate the value of Qavail.

Fig. 2 illustrates the correlation between the value of mini-
mum magnitude of complex impedance of lithium-ion battery
cell (Tenergy ICR lithium-ion battery 18650-2600) and the value
of Qavail at different SOC conditions (i.e., at 100%, 60%, and
20% SOC here) as the battery cell ages. The battery minimum
impedance may be different at different SOC conditions as
the results obtained by the authors showed and as discussed
in the literature [28]–[30]. The minimum magnitude of battery
impedance is measured at fully charged state (100% SOC state)
in this article to reduce the effect of SOC on the measurement
of Zmin. Fig. 2 is based on aging data that is collected by
charge/discharge cycling of lithium-ion battery cells [5]. The
lithium-ion battery cells are aged by using 1 C (i.e., 2.6 A)
constant discharging rate and 1 C constant current charging rate
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Fig. 1. Block diagram of the developed battery management system utilized to evaluate the presented SOC balancing method with SOH awareness capability.

Fig. 2. Experimentally measured data that illustrates the correla-
tion/relationship between minimum complex impedance magnitude value
(Zmin) and the value of Qavail as the battery cell ages at different SOC
conditions.

followed by a constant voltage charging operation mode. During
each aging cycle, EIS data, battery voltage, battery current,
and the charging/discharging time duration are measured and
recorded.

From Fig. 2, it can be observed that the minimum impedance
value of the lithium-ion battery (i.e., Zmin) has a clear and strong
correlation with SOH which indicates how many charges (i.e.,
Qavail) the battery can supply to its load especially at 100% SOC
condition (when the battery is fully charged). This correlation
is strongly supported by the accelerated aging experiments that
were carried out as a part of this work. The relationship between
Zmin and Qavail is not a simple linear one. Therefore, the ANN,
as a powerful fitting tool for nonlinear complex data, is utilized

in this article to model or learn the complex and nonlinear
relationship between Zmin and the SOH of the battery. It should
be noted that the ANN-based capacity estimator utilizes the
minimum impedance value regardless of the frequency value
at which it occurs at.

Fig. 3 shows the flowchart of the presented ANN-based bat-
tery capacity estimator using battery cell EIS. The historical data
together with new data from the latest cycle measurements are
bonded as the battery aging dataset. Data cleansing is performed
which mainly removes the outliers in the dataset. Then the data is
standardized such that it can be fed into the neural network. The
standardization is done by using the following equation [33]:

x′ =
x− μ

σ
(2)

where x′ is the data after standardization, x is the original input
data, μ is the mean value of the input data, and σ is the standard
deviation of the input data. After the standardization step, the
dataset is split into k-fold cross-validation set and test set [34].
The k-fold cross-validation technique is used here to guide the
training of ANN model. If the average validation error is below
a specified threshold value, then the training of neural network
is considered to be complete and the trained ANN model is
evaluated using the test data. Otherwise, the hyperparameters of
the ANN model have to be tuned to obtain better cross-validation
score. This is an iterative process to find the optimum parameter
values for the ANN model.

The structure used by the presented ANN-based capacity esti-
mator in this article includes: one input layer, two hidden layers,
and one output layer. These layers are stacked sequentially with
fully connected structure. The input is the minimum value of the

Aut Aut Research Journal

Volume XII, Issue XII, December/2021

ISSN NO: 0005-0601

Page No:24



TABLE I
COMPARISON BETWEEN ANN, LOOKUP TABLE METHOD AND CURVE FITTING METHOD

Fig. 3. Flowchart of ANN-based battery capacity estimator using EIS data.

complex impedance magnitude, i.e., Zmin, for a fully charged
battery cell. There are 64 neurons used in each hidden layer, and
the activation function of the hidden layer is “RELU” function
[35]. The output layer has no activation function, and it will
output the estimated available capacity Qavail. The loss function
used for training the ANN is “MSE” as given by the following
equation [36]:

MSE =
1
n

n∑
i=1

(yi − ỹi)
2 (3)

where n is the number of data points used to train the ANN, yi
is the value of Qavail obtained from battery aging experiment,
and ỹi is the predicted Qavail value for the ith sample. The used
optimizer of ANN model is “optimizer of ANN model is root
mean square propagation (RMSPROP) algorithm” [37]. The

RMSPROP algorithm is the optimization strategy to find the
optimum parameter values of the model (e.g., weight and bias)
to have the minimum value of the defined loss function, which
is MSE function in this article.

Other data fitting methods, such as lookup table method [31]
and curve fitting method [32], can also be used to model the
correlation or relationship shown in Fig. 2. However, the ANN-
based method has advantages over the lookup table method
and the curve fitting method, as summarized in Table I, which
yields better performance in terms of accuracy and upgrad-
ability/adaptability to evolving complex and dynamic battery
operation conditions (e.g., at different SOC and temperature
values) if needed in future work/update [32]. As the number
of independent variables (or input variables) is increased, it is
easier and more accurate for ANN to model relationships that
involve many variables compared to the lookup table and curve
fitting method. Moreover, the curve fitting method has poor
accuracy when used to model highly nonlinear relationships and
the accuracy of the lookup table method suffers due to the use
of discrete data point values.

B. High-Speed Minimum Impedance Magnitude Tracking

Tracking the value of minimum complex impedance magni-
tude, i.e., Zmin, of the battery is a critical part of the presented
ANN-based capacity estimator since it is the input variable of the
capacity estimator discussed in Section II-A. Fig. 4(a) illustrates
the basic circuit diagram of the online EIS measurement methods
[28], [29] used for tracking the value of Zmin. The principle of
the used impedance measurement method is based on the per-
turbation concept presented in [28] and [29]. The output voltage
of the dc–dc converter that is connected to each battery cell is
perturbed at the frequency of interest (at which the impedance
measurement is to be measured). A sample impedance magni-
tude measurement result (with wide frequency range) for the
battery cell used in this article is shown in Fig. 4(b) [28].

From Fig. 4(b), it can be observed that the magnitude of the
impedance has a parabolic shape with an identifiable minimum
value. The magnitude of impedance first decreases starting from
low frequency to a certain minimum value at a given frequency,
and then increases as the frequency value increases. Based
on this characteristic of the battery impedance magnitude, the
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Fig. 4. Online EIS measurement for tracking minimum impedance (Zmin) of
battery [28], [29]. (a) Basic circuit diagram utilized for online EIS measurement.
(b) Sample impedance magnitude measurement result for the battery cell used
in this article [28].

flowchart of the algorithm used to track the value of the minimum
complex impedance magnitude is shown in Fig. 5. Fig. 4(b)
shows a diagram that illustrates the process of tracking the
minimum complex impedance magnitude of each battery. This
process can be divided into the following steps.

Step 1: The step-function perturbation at frequency fstep is
activated in the dc–dc converter. The selection of fstep is based
on the type of battery and a priori knowledge about the battery.
The battery impedance at the odd harmonics of fstep, i.e., (2k
− 1) fstep, can be measured or obtained by using the battery
impedance calculation procedure shown in Fig. 5. Because of the
attenuation at higher order harmonics as discussed in [28], only
the first 10 harmonics are utilized to calculate battery impedance
in order to have accurate measurement results, i.e., k has a range
from 1 to 10.

Step 2: A rough initial estimate for the minimum impedance
value Zmin-initial of the battery is found by comparing the ac-
quired impedance values for the 10 harmonics from Step 1. The
frequency at which Zmin-initial occurs is denoted as fmin-initial

Fig. 5. Flowchart of the presented algorithm used to track the minimum
complex impedance magnitude of the battery.

= (2k’ − 1)fstep, and then the value of k’ can be determined
based on (4). The value of k’ is used to calculate the sinusoidal
perturbation frequencies as given by (5) and (6). Because of the
parabolic distribution characteristics of the impedance magni-
tude as shown in Fig. 4(b), the more accurate (or with better
resolution) minimum impedance value should occur between
the frequency ranges from (2k’ − 3)fstep to (2k’ − 1)fstep
and from (2k’ − 1)fstep to (2k’+ 1 )fstep, which is the reason
why multisinusoidal perturbations are activated (following the
step-function perturbation) within these two frequency ranges
to track a more accurate minimum impedance value.

k′ =
fmin−initial

2fstep
+

1
2

(4)

fsin−m = (2k′ − 3) fstep +m×
(

2fstep
10

)
,

m = 1, 2, . . . , 9. (5)

fsin−n = (2k′ − 1) fstep + n×
(

2fstep
10

)
, n = 1, 2, . . . , 9.

(6)

Step 3: The multisinusoidal perturbation within the frequency
range from (2k’ − 3)fstep to (2k’ − 1)fstep is activated in the
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Fig. 6. Control diagram of the presented SOC balancing method considering the effect of SOH of battery cells.

dc–dc converter. The perturbation frequencies are calculated
based on (5). Then the local minimum impedance value (Zmin-m)
within the frequency range from (2k’− 3)fstep to (2k’− 1)fstep is
obtained by comparing the impedance values at these sinusoidal
perturbation frequencies. The value of m is chosen to be 9 in the
experimental prototype of paper, but if higher resolution or more
accurate minimum impedance measurement result is desired, m
can be set to a larger value.

Step 4: The multisinusoidal perturbation within the frequency
range from (2k’ − 1)fstep to (2k’ + 1)fstep is activated in the
dc−dc converter. The perturbation frequencies are calculated
based on (6). The local minimum impedance value (i.e., Zmin-n)
within this frequency range is obtained by using the same
procedure for tracking Zmin-m as in Step 3.

Step 5: The final tracked minimum impedance magnitude
value of the battery, i.e., Zmin, is obtained by comparing the
values of Zmin-initial, Zmin-m, and Zmin-n. The Zmin value is
equal to the smallest value among Zmin-initial, Zmin-m, and
Zmin-n.

This hybrid approach of measuring the impedance which
combines step-function perturbation [28] and sinusoidal pertur-
bation [29] yields a more accurate minimum impedance value
in shorter time before the battery condition changes. The step-
function perturbation is used to quickly obtain the information
about which frequency range Zmin is located within and the
multisinusoidal perturbation is used to zoom in to find a more
accurate value for Zmin.

C. SOC Balancing Module

Fig. 6 shows the control diagram of the SOC balancing module
developed and used in this article. Based on the input value of
Zmin of each battery cell, the ANN-based capacity estimator
(Section II-A) outputs the estimated available capacity Qavail to
calculate or correct SOC value of each battery cell or battery
module. The SOC value for each battery cell is calculated as

given by the following equation:

SOC =
Qavail −

∑
IbattΔt

Qnominal
(7)

where Qavail is the estimated available capacity of the battery
cell or battery module, Ibatt is the current of the battery cell, and
Δt is the time interval during which the battery cell current is
equal to Ibatt. Because of the ANN-based capacity estimation
functionality, the relatively healthier battery cell has largerQavail

than the Qavail of the relatively unhealthy (or less healthy)
battery cell. When the capacity estimation information/result is
fed into the SOC balancing controller, it will create a difference
among the values of SOC of battery cells to compensate the aging
or health status differences of battery cells (refer to Fig. 6). As
a result, the SOC value of a relatively less healthy battery will
decrease. This makes the system draw less energy from the less
healthy battery because of the mechanism of the designed SOC
balancing controller, which is discussed next.

The reference value for the SOC balancing controller (Fig. 6),
i.e., SOCref, is calculated as (8) shows

SOCref =
(SOC1 + SOC2 + · · ·+ SOCi + · · ·+ SOCN )

N
(8)

where SOCi is the SOC value of ith battery cell, and N is the
number of batteries in the system. The output of SOC balancing
controller is the voltage multiplier αvi (I = 1,2,...,N) for each
BPU. The value of αvi is calculated based on the following
equation:

αvi = 1 − (SOCref − SOCi)×GvSOC (z) (9)

where GvSOC(z) is the digital or discrete SOC balancing
proportional-integral (PI) compensator/controller of the SOC
control loop as given by the following equation:

GvSOC (z) = KP−SOC +
KI−SOC × z

z − 1
(10)
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where KP−SOC and KI−SOC are the parameters of SOC bal-
ancing PI compensator. In the experimental work of this article,
the used values for KP−SOC and KI−SOC are equal to 99.9 and
0.2, respectively, and the SOC value used by the SOC control
loop is sampled at fSOC = 1/TSOC = 1 sample/second (i.e.,
TSOC = 1 s).

The voltage multiplierαvi is used to decide the output voltage
reference value of dc–dc converter connected with each battery
cell, and the output voltage reference value Vi−ref (i = 1,2,...,N)
is calculated as (11) shows

Vi−ref =
αvi

Mv
× VBus−ref =

αvi

αv1 + αv2 + . . .+ αvN

× VBus−ref (11)

where VBus−ref is the reference value of bus voltage, i.e., VBus,
as shown in Fig. 1 and Mv is the sum of all the voltage multiplier
values as given by the following equation:

Mv = αv1 + αv2 + . . .+ αvN . (12)

Because the outputs of the dc–dc converters are connected in
series in this article, the power drawn by load, i.e., Pbus, can be
calculated as (13) shows

Pbus =

N∑
i=1

pi =

N∑
i=1

IbusVi (13)

where pi is the output power of the ith BPU, Ibus is the bus
current, and Vi is the output voltage of ith BPU or dc–dc
converter. Then the power from the ith battery, i.e., Pbatt−i,
can be calculated as (14) shows

Pbatt−i =
Pi

ηi
=

IbusVi

ηi
=

Ibus
ηi

× Vi−ref = k × Vi−ref (14)

where ηi is the efficiency of the ith dc−dc power converter. The
efficiency values of the dc−dc converters are assumed to be
equal here for the purpose of theoretical analysis, i.e., every
dc−dc converter is assumed to be identical, and the output
voltage Vi is regulated to be equal to the reference valueVi−ref by
the output voltage controller. Then based on (14), it can be noted
that the higher the output voltage reference value is, i.e., Vi−ref ,
the higher the power drawn from a battery cell, i.e., Pbatt−i, will
be (the value of k here is a constant).

The duty cycle Di of ith dc–dc converter is calculated as (15)
shows

Di = (Vi−ref − Vi)×GvB (z) (15)

where GvB(z) is the digital or discrete dc–dc converter output
voltage PI compensator/controller as given by the following
equation:

GvB (z) = KP−vB +
KI−vB × z

z − 1
(16)

where KP−vB and KI−vB are the parameters of output voltage
PI compensator. In the experimental work of this article, the
used values for KP−vB and KI−vB are equal to 4.95 and
0.1, respectively, and the output voltage is sampled at fvB =
1/TvB = 1 Msample/second (i.e., TvB = 1 μs).

Based on the above analysis, the SOC value of a relatively
unhealthy or less healthy battery cell will decrease when the
ANN-based capacity estimation is activated in the system.
Therefore, the SOC balancing controller will output a smaller
voltage multiplier for this corresponding less healthy battery
cell. This causes the output voltage reference value for the
dc−dc converter connected with this less healthy battery cell to
decrease. Since all of the dc−dc converter outputs are connected
in series and therefore carry the same output current, this results
in less energy drawn from the less healthy battery cell, or more
energy drawn from relatively healthier battery cell, in order for
all of the battery cells to reach their end of discharge at the same
time.

The SOC balancing controller sets the discharge rate for a
given battery cell based on its relative health compared to the
other battery cells (and not the absolute value of its health),
which yields a more accurate health-aware SOC balancing per-
formance.

III. PRELIMINARY EXPERIMENTAL EVALUATION RESULTS

In order to test and evaluate the presented SOC balancing con-
troller with the SOH awareness capability, a proof-of-concept
(POC) experimental setup is developed in the laboratory. The
Tenergy ICR 18650-2600 lithium-ion battery is used in this
article, and its main specifications are: 4.2 V maximum voltage,
3.7 V nominal voltage, 2.6 Ah nominal capacity, and 65 mΩ
initial internal impedance magnitude at 1 kHz [38]. TI microcon-
troller TMS320F28335 [39], [40] is used to calculate SOC val-
ues, implement the related SOC balancing control algorithm, and
track the minimum complex impedance magnitudeZminvalue of
each battery cell. The ANN-based capacity estimation module is
realized by python programming and carried out in the computer.
The estimated capacity value, i.e., Qavail, is sent from the ANN
module to the TI microcontroller TMS320F28335 (using serial
communication interface [41]). Each battery cell is connected at
the input of the corresponding dc–dc boost converter [Fig. 4(a)].
The main parameters of interest of each dc−dc boost converter
are: 4.7 μH inductor, 120 μF input and output capacitors, and
100 kHz switching frequency. The total bus voltage (Fig. 1) and
bus current (i.e., load current) in this article as shown in Fig. 1
are set to 18 V and 1 A, respectively. One brand new battery
(battery 1) and one aged battery (battery 2), i.e., which has a
lower SOH, are selected for experiment in this article. These
two batteries are charged fully (to 4.2 V each) before used for
experiment in this article.

The layout design of the experimental prototype is made
symmetric and uniform in order to minimize stray impedance
values and make their effect uniform on the measurement of
minimum impedance values across all battery cells.

Fig. 7 shows the battery impedance online measurement
results (using the method described in Section II-B) which are
then used for tracking the minimum impedance magnitude of
battery 1 and battery 2 and used in the ANN estimation module
(Section II-A). The impedance measurement is done at the
beginning of discharging when each battery cell is almost at
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Fig. 7. Battery impedance measurement results for tracking the value ofZmin.
(a) Battery 1. (b) Battery 2.

its fully charged state (i.e., 100% SOC state). The frequency
used for step-function perturbation is 200 Hz.

Based on the impedance measurements using the step-
function perturbation, the initial minimum complex impedance
magnitude values (Zmin-initial as shown in Fig. 5) of battery 1
and battery 2 occur at 1.4 and 1.8 kHz, respectively. For battery
1, because the Zmin-initial occurs at 1.4 kHz (i.e., fmin-initial

= 1.4 kHz), the value of k’ is calculated to be 4 based on
(4). The multisinusoidal perturbations are activated within two
frequency ranges, i.e., 1−1.4 kHz and 1.4−1.8 kHz, and the
multisinusoidal perturbation frequencies are calculated based
on (5) and (6). By following the tracking algorithm presented
in Section II-B, the tracked Zmin value of battery 1 is found
to be equal to 64.6 mΩ at 1.56 kHz. For battery 2, because
the Zmin-initial occurs at 1.8 kHz (i.e., fmin-initial = 1.8 kHz), the
value of k’ is calculated to be 5 based on (4). The multisinusoidal
perturbations are activated within two frequency ranges, i.e.,
1.4−1.8 kHz and 1.8−2.2 kHz, and the multisinusoidal per-
turbation frequencies are determined based on (5) and (6). By
following the tracking algorithm presented in Section II-B, the
tracked Zmin value of battery 2 is found to be equal to 66.8 mΩ
at 1.8 kHz. It can be observed that the value of Zmin for battery
2 is larger than the value ofZmin for battery 1, which is expected
because battery 2 is older/aged and has a lower SOH.

A total of 990 data samples are used for initial training of
the ANN-based capacity estimator. The 990 data points are

Fig. 8. Evaluation results of ANN-based capacity estimator on the test dataset.

collected using the battery aging experiment conducted on the
aging platform presented in [5]. The complete dataset of samples
can be treated as a two-dimensional array of data structure (X,
Y) = (Zmin, Qavail).

Eight hundred and eighty data points of the 990 data points
are used for k-fold cross-validation dataset, and the remainder
110 data points are used for test dataset. The k value is chosen
to be 10 for the k-fold cross-validation and the threshold value
for the average validation error is set to be 300 Coulombs (C).
The trained ANN-based capacity estimator is evaluated by the
test dataset, and the evaluation result is shown in Fig. 8. The
average absolute magnitude error on the test dataset is 110.8 C,
which is about 2.61%. The estimation relative error is calculated
as follows:

relative error =
|Qpred−Qtest|

Qtest
× 100% (17)

where Qpred is the predicted available capacity given by the
ANN-based capacity estimator and Qtest is the capacity value
from the test dataset. Based on these results, the evaluation score
on the test dataset is fairly good. This means the developed
or trained ANN-based capacity estimator can predict battery
available capacity fairly well. Based on the tracked Zmin values
of battery 1 and battery 2, the predicted available capacity values
by the ANN-based available capacity estimator for battery 1
and battery 2 are 9360 and 8017 C, respectively, where 9360 C
corresponds to Zmin = 64.6 mΩ and 8017 C corresponds to
Zmin = 66.8 mΩ. This indicates that the available capacity
of battery 2 is ∼14.35% lower than the available capacity of
battery 1.

Fig. 9 shows the values of SOC, αv, and Vi-ref (in Fig. 6)
for each of the two batteries during discharging, when the SOH
effect is accounted for by the controller [Fig. 9(a), (b), and (c),
respectively] and when the SOH effect is not accounted for by
the controller [Fig. 9(d), (e), and (f), respectively]. In Fig. 9(a),
from t= 0 to t= 6 min, the SOH effect of battery cells is initially
not accounted for and the capacity capabilities of both battery
cells are assumed to be the same (SOH difference between the
two batteries is not accounted for yet). However, at t = 6 min,
the capacity capabilities of battery 1 and battery 2 are corrected
based on the estimation results from the ANN-based capacity
estimator (i.e., the system becomes aware of the actual available
capacity capability based on the SOH information), and the
corrected available capacity values are fed to the SOC balancing
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Fig. 9. Experimentally measured values of SOC, αv and Vi-ref for each of the two batteries during discharging. (a) SOC values when SOH effect is accounted
for by the controller. (b) αv values when SOH effect is accounted for by the controller. (c) Vi-ref values when SOH effect is accounted for by the controller. (d)
SOC values when SOH effect is not accounted for by the controller. (e) αv values when SOH effect is not accounted for by the controller. (f) Vi-ref values when
SOH effect is not accounted for by the controller.

controller. Because of this capacity capability correction or
adjustment, the SOC value [Fig. 9(a)] of battery 2 is corrected
from 90.9% to 76.2%, and the SOC value of battery 1 is almost
not changed (from 90.9% to 90.3%). This adjustment yields
∼14.1% SOC value difference between battery 1 and battery
2. As a result and based on (9) and Fig. 6, the SOC balancing
controller outputs larger voltage multiplier αv1 for battery 1
and smaller voltage multiplier αv2 for battery 2 as shown in
the results in Fig. 9(b) until the SOC is balanced at t = 15 min
(9 min after t = 6 min). After this time, the multiplier values
might maintain slight mismatch in order to keep balanced SOC
values.

Based on theαv1 andαv2 values, the output voltage reference
values V1-ref and V2-ref for each dc–dc converter connected with
each battery are calculated according to (11). The limits set in
microcontroller for the values of αv and Vi-ref for this design
are given by (18) and (19), respectively. From t = 6 min to
t = ∼14 min, αv1 and αv2 values reach their limits of 2 and
0, respectively, and the corresponding V1-ref and V2-ref values
reach their limit of 13 and 5 V, respectively. This allows the
system to draw higher power from battery 1 and lower power
from battery 2. The SOC values of the two batteries are balanced
around t= 15 min, and the balance is maintained until the end of
discharging operation. The system stops discharging operation
when one of the following conditions occurs: 1) the SOC value
of one of the battery cells reaches zero or 2) when the voltage
of one of battery cells reaches the discharge end voltage of
2.7 V [38] in order to prevent over-discharging of any of the
battery cells. Under this case experiment, the system stopped
discharging operation at t= 51.3 min when the voltage of battery
1 reaches the discharge end voltage. This occurred when the SOC

values of battery 1 and battery 2 were equal to 0.89% and 1.19%,
respectively

αvi =

⎧⎨
⎩

0, if αvi ≤ 0
αvi, if 0 < αvi < 2
2, if αvi ≥ 2

(18)

Vi−ref =

⎧⎨
⎩

5V, if Vi−ref ≤ 5V
Vi−ref , if 5V < Vi−ref < 13V.
13V, if Vi−ref ≥ 13V

(19)

The results plotted in Fig. 9(d), (e), and (f) are for the case
when the SOH effected is not accounted for, i.e., the SOH
estimation result is not fed to the SOC balancing controller (in
this case, in Fig. 6,Qavail−1 = Qavail−2 for battery 1 and battery
2, which is, in fact, not the case because the SOH for battery 2 is
lower than the SOH for battery 1). In this case, battery 2, which is
the battery with lower SOH, reached the discharge end voltage
or end of discharging earlier than battery 1 and therefore the
controller terminated the operation earlier at t= 48.3 min. At the
end of operation in this case, 13.6% of battery 1 SOC value has
not been used due to early termination to protect battery 2 from
over-discharging. The difference between the values of αv1 and
αv2 and the difference between the values of V1-ref and V2-ref at
the end of operation are because the voltage of battery 2 drops
very quickly at the end and is much smaller than that of battery 1
and the controller is attempting to correct the voltage references
to maintain SOC balance under different battery voltages.

Fig. 10 shows the experimental measured voltages, currents,
and used/discharged coulombs for each of the two battery cells
when the SOH effect is accounted for by the controller and when
the SOH effect is not accounted for by the controller. For the
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Fig. 10. Experimentally measured voltages, currents, and used/discharged coulombs during the discharging operation for the two battery cells. (a) Battery cell
voltages when SOH effect is accounted for by the controller. (b) Battery cell currents when SOH effect is accounted for by the controller. (c) Used/discharged
coulombs when SOH effect is accounted for by the controller. (d) Battery cell voltages when SOH effect is not accounted for by the controller. (e) Battery cell
currents when SOH effect is not accounted for by the controller. (f) Used/discharged coulombs when SOH effect is not accounted for by the controller.

TABLE II
PERFORMANCE COMPARISON BETWEEN THE CASE WHEN SOH EFFECT IS ACCOUNTED FOR AND THE CASE WHEN

SOH EFFECT IS NOT ACCOUNTED FOR BY THE CONTROLLER

case when SOH effect is accounted for by the controller, the
value of Vbatt1 becomes almost equal to the value of Vbatt2

after the capacity capabilities of batteries are corrected/adjusted
by the ANN capacity/SOH estimator using EIS data and the
SOC values are rebalanced. By the end of discharge operation,
the used coulombs/capacities from battery 1 and battery 2 are
9276 and 7905 C, respectively, in this case, which are very close
to the estimated capacity value of battery 1 and battery 2, i.e.,
9360 and 8017 C, respectively.

For the case when SOH effect is not accounted for by the
controller, the value of Vbatt1 is larger than the value of Vbatt2

during the entire operation. This can partially be explained by
the following equation:

Vterminal = Vocv − Ibatt × Z (20)

where Vterminal is the terminal voltage of the battery which
is represented by the voltages (Vbatt1 and Vbatt2) shown in
Fig. 10(a) and (d), Vocv is the open circuit voltage of the battery,
and Z is the magnitude of battery impedance. As discussed and
shown earlier in this article, battery 2 is moderately aged battery,
and its impedance magnitude is larger than that of battery 1

(new battery). This explains why Vbatt2 is smaller than Vbatt1

in Fig. 10(d) even though both batteries are charged fully to
4.2 V before discharging experiment and Ibatt1 is equal to Ibatt2
during the discharging (when SOH is not accounted for by the
controller). Under this case when SOH effect is not accounted
for by the controller, the used/discharged coulombs/capacities
from battery 1 and battery 2 are 8084 and 8087 C, respectively.

Table II summarizes some of the results and shows a com-
parison between the case when the SOH effect is accounted for
in the SOC balancing controller and the case when the SOH
effect is not accounted for in the SOC balancing controller. The
presented SOC balancing method with SOH awareness using
impedance information has the following advantages.

1) It extends the system operation time. In the experimental
example of this article, the operation is extended from 48.3
to 51.3 min, which is a 6.21% improvement.

2) It improves the energy/coulomb utilization efficiency. In
the example system of this article, when the controller
accounts for the SOH effect, the system can draw a total
of∼17 181 C from the two batteries (9276 C from battery 1
and 7905 C from battery 2) compared to ∼16 171 C when
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SOH is not accounted for. This yields 6.25% (1010 C)
improvement.

3) Instead of assuming that each battery cell or module
has the same capacity capability, the ANN capacity/SOH
estimator using the impedance information results in a
more accurate capacity estimation and therefore SOC
estimation.

4) It reduces the possibility of over-discharging issue in the
battery system.

IV. CONCLUSION

The presented SOC balancing controller has an SOH aware-
ness and it takes the SOH status for each lithium-ion battery
cell or module into consideration in its operation, which yields
several advantages such as increased operation time, energy
utilization efficiency, and avoidance of over-discharging. The
avoidance of over-discharging can maintain batteries healthier
for longer time and reduces the possibility of catastrophic fail-
ures.

The presented ANN-based capacity/SOH estimator which uti-
lizes the relationship between the minimum complex impedance
magnitude value of the battery and capacity fading yields fairly
good SOH estimation results in order to have accurate SOC
estimation or calculation. The presented hybrid online battery
impedance measurement method with higher speed and higher
measurement resolution allows the ANN-based capacity/SOH
estimator to quickly and accurately obtain the minimum com-
plex impedance magnitude value of the battery in order to
quickly estimate SOH. This provides the ANN-based SOH esti-
mator to quickly see any change in SOH values during operation
without needing to wait for one or several operation cycles to
see such change.

The operation of the presented SOC balancing controller with
SOH awareness is evaluated using a POC experimental setup.
The results demonstrated the operation of the system and its
potential.

The advances in the technology of high-speed digital circuits
and microcontrollers have made the implementation of complex
calculations and functions easier, faster, and with a cost that
continues to decrease. For example, using the relatively low-cost
microcontroller TI TMS320F28335 [39], [40] in this article,
which has a clock speed of 150 MHz and 16 ADC channels, the
process for finding the minimum impedance value and available
capacity does not take more than a few seconds (note that SOC
and SOH are slowly varying parameters that are updated at
low speed). The added cost as a result of adding the presented
controller to a battery system is expected to be relatively low
compared to the overall cost of the battery system and the
resulted performance advantages such as increased reliability,
safety, and operation lifetime. It should be noted that the pre-
sented controller does not need to be realized at the cell level and
can be realized at the battery module level in order to reduce the
added cost (i.e., a battery module can, for example, include 10
battery cells connected in series and one minimum impedance
value is found for the module as if they were one larger battery

cell). In this case, the health-aware SOC balancing control can
be achieved between several battery modules.

Future work includes, but is not limited to, studying other
SOH indicators for SOH estimation and developing ANN-based
SOH or capacity estimators with multi-SOH indicators as its
inputs to utilize the advantages of each SOH indicator and then
to achieve better battery SOH/capacity capability estimation
performance.
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